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ABSTRACT 

The e f f e c t s  of s t r e t c h  temperature, heat-set  temperature and heat-set  

t i m e  on t h e  cryogenic mechanical propert ies  of PET f i l m  were s tudied by 

using a twa-level f a c t o r i a l  experiment. Squares of amorphous PET sheet 

were given a simultaneous biaxial  3 X  s t r e t c h  i n  a laboratory f i l m  s t r e t c h e r  

a t  either 85 o r  95 C, The l e v e l s  o f  hea t - se t  temperature and time in- 3 

n 

ves t iga ted  were 190 and 210d C, and 15 and 120 seconds, respect ively.  

C r y s t a l l i n i t i e s  of t h e  f i l m s  were determined by  t h e  density-gradient 

technique. 

i n  l i q u i d  hydrogen (20' K ) .  

l i q u i d  nitrogen. 

Tensi le  propert ies  were measured i n  l i q u i d  ni t rogen (77' K) and 

Biaxial b u r s t  propert ies  were obtained i n  

It w a s  found that processing var iables  s i g n i f i c a n t l y  a f f e c t  t h e  stress- 

s t r a i n  proper t ies  of PET f i l m  a t  cryogenic temperatures. These r e s u l t s  and 

encouraging values of f l e x i b i l i t y  o f f e r  leads f o r  possible  use of spec ia l ly  

processed PET f i l m s  f o r  cryogenic space appl ica t ions .  

INTRODUCTION 

Filament wound g lass  reinforced p l a s t i c s  o f f e r  an a t t r a c t i v e  solu- 

t i o n  t o  t h e  problem of providing light-weight, high-strength tanks f o r  

t he  s torage  of  cryogenic propellants.  Permeation, o r  leakage, o f  the 
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cryogen through t h e  tank wal ls  i s  the major problem which has  t o  be solved 

before t h e  f u l l  po ten t ia l  of these reinforced p l a s t i c s  can be realized. 

The poros i ty  problem i s  associated w i t h  both the filament reinforcement 

and the  r e s i n  matrix. 

An obvious solut ion t o  the  porosity problem i s  t o  provide some type 

of l i n e r  within t h e  tank t o  prevent permeation of t h e  f l u i d .  The l i n e r  

material should be capable of being e l a s t i c a l l y  s t ra ined from zero t o  a t  

l e a s t  2 . 5  percent and back t o  zero again under b i a x i a l  loading condi- 

t i o n s  f o r  a number of times ( r e f .  1). 

nonmetallic f i l m s  have been investigated as possible l i n e r  materials.  

The use of polymeric f i l m s  would be desirable  because not only are they 

light-in-weight, but  they might a l s o  serve as a means f o r  expelling t h e  

f l u i d  from the  tank under zero gravi ty  conditions. 

ner, the  polymeric f i l m  must be f l e x i b l e  as w e l l  as  revers ib ly  extensible.  

The results of an extensive screening program performed by Beech 

I n  t h i s  study both metal l ic  and 

If used i n  t h i s  man- 

A i r c r a f t  ( r e f .  2 )  showed t h a t  although none of the  cur ren t ly  ava i lab le  

p l a s t i c  f i l m  materials were su i tab le  f o r  use as  l i n e r s  or  bladders, poly 

(ethylene terephthalate)  (PET) f i l m  possesses some cryogenic f l e x i b i l i t y .  

There are a number of approaches t o  obtaining a s a t i s f a c t o r y  cryo- 

genic polymeric f i l m ;  e.g., continued screening of commercial materials, 

synthesis  of new o r  modified polymers ( re f .  3), and study of polymer 

processing variables.  Heffelfinger and Schmidt (ref. 4) studied the  

e f f e c t  of processing on room temperature properties.  The object ive of 

t h i s  inves t iga t ion  w a s  t o  determine i f  v a r i a t i o n  of processing conditions 
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offered l e a d s  t o  s ignif icant  improvement of cryogenic properties.  Com- 

par ison with commercial PET was  incidental  t o  es tab l i sh ing  these leads. 

The e f f e c t s  of s t r e t c h  temperature, heat-set  temperature, and heat-  

s e t  time on a number of propert ies  of PET f i l m  were studied by using a 

two-level f a c t o r i a l  experiment. 

by density-gradient a t  room temperature. 

a t  room temperature, 77' K (LN2) and a t  20' K (LH2). 

urements were made a t  77' K. 

Crys ta l l in i ty  of t h e  f i l m s  w a s  determined 

Tensile propert ies  were measured 

Biaxial burs t  meas- 

MATERIALS AND PROCEDURES 

The extruded amorphous sheet used i n  t h i s  study w a s  reported t o  

possess no or ien ta t ion  and t o  have a number average molecular weight of 

19,500. It had a nominal thickness of 6 m i l s .  

Film processing. - The f a c t o r s  studied i n  t h i s  invest igat ion were 

s t r e t c h  temperature, heat-set  temperature and heat-set  time. Two l e v e l s  

of each were selected t o  l i m i t  t h e  number of experimental conditions t o  

e ight  and form a 2 f a c t o r i a l  experiment. This design permits indepen- 

dent es t imates  of t h e  e f f e c t s  of a l l  f a c t o r s  and t h e i r  in te rac t ions  using 

a minimum number of f i l m  preparation conditions. 

f a c t o r  were selected t o  be far enough apart  t o  determine these e f f e c t s  

i n  t h e  presence of random experimental error .  

not be so fa r  apar t  t h a t  t h e i r  range includes the  l e v e l  of optimum or  

minimum response. 

are wisely selected,  t h e  r e s u l t s  of a two-level f a c t o r i a l  experiment w i l l  

provide leads  t o  f u r t h e r  improvement of propert ies .  Optimization of pro- 

cessing var iab les  t o  a t t a i n  spec i f ic  design proper t ies  can follow. 

3 

The two l e v e l s  of each 

However, t h e  l e v e l s  should 

If these f a c t o r s  a f f e c t  t h e  response and t h e  l e v e l s  
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Stretching temperatures of 85 and 95' C were chosen t o  be s u f f i c i e n t l y  

above t h e  g lass  t r a n s i t i o n  temperature of 69' C ( r e f .  5) t o  s t r e t c h  t h e  

amorphous PET without tearing. Heat-set temperatures of 190 and 210' C 

were selected t o  be i n  the  region which gives  t h e  minimum half-time f o r  

c r y s t a l l i z a t i o n  ( re f .  6 ) .  Preliminary work had shown t h e  b i a x i a l l y  

s t re tched f i l m  changed 1 i t t l e . i n  density after 1 2 0  seconds a t  190' C. 

Some hea t  s e t t i n g  i s  desirable  t o  s t a b i l i z e  t h e  f i l m .  Heat-set times 

of 15 and 120 seconds were used. F i f teen  seconds i s  near minimum t i m e  

t o  reproducibly heat t r e a t  t h e  film. 

Films were a l s o  prepared at  the center point of t h e  design, i . e . ,  
0 

st retched a t  90 C and set at  C f o r  42 seconds ( t h e  geometric mean of 

the  two l e v e l s  of s e t  t i m e ) .  

center  point  and the  average f o r  a l l  eight conditions o f f e r s  evidence of 

curvature of t h e  response surface (which i s  a funct ion of th ree  indepen- 

dent var iab les ) .  

required t o  assess  which f a c t o r  i s  responsible f o r  curvature. 

The difference between the  response a t  t h i s  

However, da ta  a t  other experimental conditions a r e  

Squares of the  amorphous sheet (4 in. x 4 in. ) were s t re tched i n  a 

The sheet was manually inser ted  commercially avai lable  f i l m  s t re tcher .  

i n t o  the  s t re tch ing  chamber which w a s  controlled a t  the  selected tempera- 

t u r e  and then both axes were simultaneously s t re tched t o  3X a t  a rate of 

1000 percent per minute. 

b r a t i o n  i n  the  s t re tching chamber before and a f t e r  s t re tching.  

ing  machine w a s  provided with a special  device which quenched the f i l m  t o  

room temperature and enabled t h e  f i l m  t o  be e a s i l y  removed f r e e  of wrinkles 

and/or folds.  

The amorphous sheet w a s  given a 15 second e q u i l i -  

The s t re tch-  

Heat s e t t i n g  was accomplished by clamping the  f i l m  i n  a 
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r e s t r a i n i n g  frame and placing it i n  a c i r c u l a t i n g  a i r  oven f o r  t h e  t i m e  

and temperature specified.  It w a s  then removed from the  oven and cooled 

t o  ambient temperature. Other f i l m s  were s t re tched but not heat-set .  

Film density. - Density of the  f i l m s  w a s  determined by t h e  density- 

gradient technique ( r e f .  7 ) .  The l iqu id  system chosen f o r  the  column 

used i n  t h i s  study w a s  n-hexane and carbon te t rachlor ide .  Glass f l o a t s  

of known densi ty  were used t o  ca l ibra te  the  column. The column w a s  

maintained a t  a constant temperature of 23f0.1' C. Two small pieces  of 

each f i l m  were placed i n  the column and allowed t o  reach equilibrium. 

The pos i t ion  of t h e  c a l i b r a t i o n  f l o a t s  and samples, r e l a t i v e  t o  an arbi- 

t r a r y  reference, was measured with a cathetometer. 

Uniaxial t e n s i l e  properties.  - Tensile proper t ies  of the  f i l m s  were 

evaluated i n  a universal  t e s t i n g  machine with 1 inch w i d e  

specimens cu t  with length perpendicular t o  t h e  d i r e c t i o n  of extrusion of 

the  amorphous f i l m .  

c a l l y  recorded. 

Load and extent  of g r i p  separation were automati- 

A n  i n i t i a l  g r i p  separation of 4 inches was  used f o r  a l l  

t e s t s .  The r a t e  of g r i p  separation was 2.0 inches per  minute. Cryostats 

2 
of the  type described i n  reference 8 were employed f o r  t h e  LN 

t e s t s .  

and LH 
2 

B i a x i a l  diaphragm burs t  t e s t .  - Biaxial s t r e s s - s t r a i n  proper t ies  of 

t h e  f i l m s  were measured a t  77' K i n  an apparatus similar t o  t h a t  described 

i n  reference 9. The tes t  specimen was bol ted between a c i r c u l a r  f l a t  

p l a t e  and an 8 inch inside diameter annulus. 

with means f o r  introduction of t h e  helium gas used f o r  pressurization. 

The bottom p l a t e  was  provided 
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A l l  tes ts  were performed with a constant gas flow r a t e  t o  rupture. 

t i c a l  def lec t ion  of the f i l m  w a s  measured with a l i n e a r  potentiometer 

connected t o  a one inch diameter counterbalanced d isc  which res ted  on 

the  f i l m .  The pressure underneath the f i l m  was recorded with a pres- 

sure transducer. The e n t i r e  diaphragm clamping device w a s  submerged i n  

LNZ. 

V e r -  

DISCUSSION OF RF1SULTS 

!This sect ion i s  divided i n t o  p a r t s  descr ibing the  r e s u l t s  obtained 

f o r  each response measured on t h e  PET fi lms. 

uniaxial  t e n s i l e  t e s t s  conducted i n  l iqu id  nitrogen a t  77' K and i n  

l i q u i d  hydrogen a t  20' K; and b i a x i a l  diaphragm b u r s t  tests i n  l i q u i d  

nitrogen. 

Included a r e  c r y s t a l l i n i t y ;  

Using the  d a t a  f o r  each experimentally determined response, coef- 

f i c i e n t s  of the  following regression model were calculated except t h a t  

b 

missing TDr t h e  tests with LH 

and bmC were zero for t h e  tests with LN and addi t iona l ly  bAC was 
D 2 

2' 

A ~ A  + bBXB + bCXC + b x x A B A B  y = b  + b  
0 

where y i s  any response, 

x ' s  are -1 f o r  the low l e v e l  and +1 f o r  t h e  high l e v e l  
of each of the three  fac tors  designated by subscr ipts  
A, B, and C, and 

b s a r e  the  corresponding coef f ic ien ts  determined by 
regression analysis.  
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These coe f f i c i en t s  were then t e s t e d  a t  a s ignif icance l e v e l  of a = 0.05 

unless othe&se noted. 

. I.-. ' . 

Resul ts  a r e  shown on bar  graphs represent ing 

only f a c t o r s  which have a s igni f icant  e f f ec t .  When a f a c t o r  does not 

show a s ign i f i can t  e f f ec t ,  results are  averaged over the  two l e v e l s  of 

t h a t  fac tor .  Thus, each bar on a graph i s  based upon t h e  average of a 

number of determinations. 

Crys t a l l i n i ty  

I n  t h i s  repor t  c r y s t a l l i n i t y  of the f i l m s  i s  considered as a re- 

sponse t o  the  processing conditions. Ideal ly ,  morphological proper t ies  

of t he  f i l m ,  such as c r y s t a l l i n i t y  and or ientat ion,  should serve as 

f a c t o r s  upon which the  mechanical property type responses depend. How- 

ever, it was first  necessary t o  l e a r n  how t o  prepare f i lms  with a suita- 

b l e  range of c r y s t a l l i n i t y ,  and i n  t h i s  sense c r y s t a l l i n i t y  i s  a response. 

Crys t a l l i n i ty ,  C, can be estimated from the  f i l m  spec i f i c  gravi ty ,  

p ,  .a value of 1.33 was measured f o r  the amorphous PET and t h e  calculated 

value of 1.455 was used f o r  t h e  perfect  c r y s t a l  (ref. 10). 

C =  = 8.00(p - 1.33) 
1.455 - 1.33 

Increasing the  s t r e t ch ing  temperature, hea t -se t t ing  temperature, 

and s e t t i n g  t i m e  a l l  increase t h e  c r y s t a l l i n i t y  of t h e  f i l m  ( f i g .  1). 

The e f f e c t  of t h e  hea t -se t t ing  temperature i s  most pronounced causing 

f i l m s  hea t - se t  at  210' C t o  have 3.6 percent higher c r y s t a l l i n i t y  than 

f i l m s  hea t - se t  at 190' C. The e f f e c t  of each of t he  other  f a c t o r s  i s  

only about one-third as large.  The range of c r y s t a l l i n i t y  i s  from 41.9 

percent for t he  l o w  l e v e l s  of a l l  three f a c t o r s  t o  48.1 percent f o r  t h e  

high leve ls .  
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Films s t re tched a t  85'and 9 9  C and not heat-set  a r e  15.8 percent 

and 20.9 percent c r y s t a l l i n e ,  respectively. I n  both cases, t h i s  i s  

less than  half  the  c r y s t a l l i n i t y  of heat-set  f i l m s  regardless  of the  

conditions. 

ing  i n  increased density. 

magnitude occurs upon heat-set t ing a t  higher temperature. 

develop a more ordered and closely packed form when heated t o  190' C o r  

210' C f o r  short  times and f i l m s  become over 40 percent c rys ta l l ine .  

Heffelfinger and Schmidt ( re f .  4) describe changes i n  t h e  c r y s t a l l i n e  

and amorphous regions during t h e  s t re tch ing  and heat-set t ing processes, as 

observed by X-ray d i f f rac t ion ,  infrared, density,  and s t r e s s - s t r a i n  

measurements a t  room temperature. 

t r a n s  during the  stretching. The trans isomer c r y s t a l l i z e s  due t o  

alignment of adjacent molecules. Their evidence favors  isomerzation 

of gauche t o  t r a n s  t o  promote c r y s t a l  growth during heat-sett ing.  

Stretching therefore  or ien ts  the polymer molecules r e s u l t -  

However, a n  increase i n  densi ty  of a l a r g e r  

The molecules 

The gauche form i s  transformed i n t o  

The r e s u l t s  on the f i l m  produced a t  t h e  center  point  were included 

i n  t h e  ana lys i s  and indicate  t h a t  curvature of t h e  c r y s t a l l i n i t y  response 

over the  range of these f a c t o r s  studied i s  not s ignif icant .  

Uniaxial Tensile Propert ies  

S t r a i n  a t  the  proportional l i m i t .  - This property i s  defined as t h e  

s t r a i n  a t  which the  s t r e s s - s t r a i n  curve depar t s  from l i n e a r i t y .  

of p a r t i c u l a r  importance since a l i n e r  must expand with the  tank as in-  

t e r n a l  pressure i s  applied and then contract  t o  i t s  o r i g i n a l  dimension. 

The s t r a i n  a t  the  proportional l i m i t  i s  more readi ly  measured than t h e  

recoverable s t r a i n  limit and ye t  serves as a guide t o  the  usefulness of 

t h e  f i l m  f o r  the  l i n e r  application. 

It i s  



- 9 -  

S t r e t c h  temperature and heat-set t ing t i m e  a r e  t h e  f a c t o r s  a f fec t ing  

Films s t re tched a t  s t r a i n  a t  t h e  proportional l i m i t  i n  l iquid nitrogen. 

95 C and set f o r  120 seconds averaged 2 . 1  percent s t r a i n  compared t o  0 

1.57 percent f o r  s e t t i n g  15 seconds (f ig .  2 ) .  

85' C t h e  longer s e t  time increases  the s t r a i n  by only 0.15 percent 

s t r a i n  compared t o  the 0.62 percent f o r  t h e  higher temperature. 

there  i s  a s igni f icant  in te rac t ion  between these two f a c t o r s  i n  t h e  

manner i n  which they a f f e c t  s t ra in  a t  the  proportional l i m i t .  

sponse does not depend upon the  heat-set  temperature. 

For films stretched at  

Thus, 

This re- 

Since i n  l i q u i d  hydrogen there  are d a t a  on s t r a i n  a t  t h e  propor- 

t i o n a l  l i m i t  f o r  j u s t  th ree  d i f f e r e n t  f i lms, the  only s igni f icant  f a c t o r  

t h a t  can be establ ished i s  the  temperature of the  t e n s i l e  t e s t .  

average s t r a i n  i s  2 . 1  percent which i s  0 . 2  percent grea te r  than f o r  t h e  

corresponding values obtained i n  l iquid nitrogen. 

The 

S t r e s s  a t  t h e  proportional l i m i t .  - This property i s  the stress at  

t h e  same point of the  s t r e s s - s t r a i n  curve defined i n  t h e  previous section. 

S t r e s s  a t  t h e  proportional l i m i t  decreases with increasing s t r e t c h  t e m -  

perature  ( f i g .  3). The values a r e  also higher when t e s t e d  a t  the lower 

temperature of l i q u i d  hydrogen. 

the  previous s t r a i n  values, i n  general, t h e  modulus i s  higher f o r  f i l m s  

s t re tched a t  85' C than those stretched a t  95' C. 

a f f e c t s  t h e  modulus determined i n  l iqu id  nitrogen giving higher values 

f o r  shor te r  t i m e s  of setting as seen i n  Table I. 

When these results are combined with 

Heat-sett ing time 
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S t r a i n  a t  break. - The s t r a i n  at  which these PET f i l m s  break i s  much 

g rea t e r  than the  proportional l i m i t  s t r a i n  and a l so  v a r i e s  more with pro- 

cessing f a c t o r s  ( f ig .  4). I n  l i q u i d  nitrogen the  s t re tch ing  temperature 

and hea t -se t t ing  temperature both have l a rge  e f f ec t s ;  the  greatest u l t i -  

mate s t r a i n  of 15.4 percent i s  a t ta ined  with both processing temperatures 

a t  t h e  low leve ls .  

s t r a i n  i s  reached a t  break. 

c r y s t a l l i n i t y .  However, hea t - se t t ing  t i m e ,  which a f f e c t s  t he  c rys t a l -  

l i n i t y  t o  a l imi ted  extent,  does not s ign i f i can t ly  change t h e  ultimate 

s t r a in .  Note a l s o  t h a t  t he  s t re tch ing  temperature general ly  causes 

opposite e f f e c t s  on the  proport ional  l i m i t  and s t r a i n  a t  break values 

( f ig s .  2 and 4). 

s t r e t ch ing  at 95' C and heat ing f o r  120 seconds. 

With high processing temperatures only 5.0 percent 

These a r e  roughly inversely r e l a t e d  t o  t h e  

The highest  proportional l i m i t  s t r a i n  was obtained by 

?"ne s t r a i n  a t  break i n  l i q u i d  hydrogen is  lower than i n  l i q u i d  ni-  

trogen. Stretching temperature a l so  a f f e c t s  t he  s t r a i n  at break; 7 .3  

percent s t r a i n  i s  obtained f o r  85 
0 

C s t re tch ing  and 5.0 percent f o r  95' C. 

S t r e s s  a t  break. - The breaking s t r e s s  i s  af fec ted  s ign i f i can t ly  

only by t h e  s t re tch ing  temperature and t h i s  e f f e c t  i s  shown i n  f igu re  5. 

I n  both cryogens higher stress i s  reached with f i lm  stretched a t  85' C, 

t h e  lower temperature. 

higher than those obtained i n  l i q u i d  nitrogen. 

same p a t t e r n  as f o r  s t r e s s  a t  the  proportional l i m i t ,  bu t  values of the  

stress a t  break are over twice as high. 

ture and t i m e  d id  not s ign i f i can t ly  a f f ec t  stress a t  break. 

Values i n  l i qu id  hydrogen are about 15 percent 

These r e s u l t s  show t h e  

Again, hea t - se t t ing  tempera- 
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B i a x i a l  B u r s t  Properties i n  Liquid Nitrogen 

The r e s u l t s  on the  various s t r e s s - s t r a i n  proper t ies  reported below 

a r e  based on s ingle  tests of each of the e ight  f i l m s  prepared with t h e  

eight d i f f e r e n t  processing treatments of the  f a c t o r i a l  experiment pre- 

viously described. I n  the absence of a good estimate of the  reproduci- 

b i l i t y  of f i l m s  i n  t h i s  t e s t ,  t h e  significance of main e f f e c t s  was 

judged s t a t i s t i c a l l y  by comparison with higher order ( i n t e r a c t i o n )  e f -  

f e c t s .  This in te rpre ta t ion  i s ,  of course, conservative i n  report ing 

s i g n i f i c a n t  e f f e c t s .  True e f f e c t s  of smaller s ize  would not be declared 

s igni f icant  and would be "missed" by t h i s  procedure. However, examina- 

t i o n  of t h e  results indicated duplicate tests are not necessary since 

smaller e f f e c t s  than those found a r e  no t  of p r a c t i c a l  value. 

Calculating stress and s t ra in .  - The engineering stress i s  calcu- 

l a t e d  from the  pressure difference across the  f i l m  diaphragm using t h e  

following equation: 
m 

S t r e s s  = 2t 

where 

AP pressure difference across  the  f i lm 

R rad ius  of curvature of def lected diaphragm 

t o r i g i n a l  f i l m  thickness 

The engineering s t r a i n  i s  defined as t h e  increase i n  length of a 

diameter l i n e  drawn on the c i r c u l a r  f i l m  specimen divided by the  o r i g i n a l  

d i m e  te r  

R 8  - 2 r  S t r a i n  = ~~ 
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where 

e cen t r a l  angle of diameter a r c  formed by the  def lec t ing  f i l m  

r 

Since 

o r i g i n a l  radius  o f  f r e e  f i l m  diaphragm 

and 

r2 + h2 
2h 

R =  

where h is the measured def lec t ion  perpendicular t o  the  o r i g i n a l  plane 

of t h e  f i l m ,  s t r a i n  is  calculated from t h e  measured values of r and h. 

A b i a x i a l  s t r e s s - s t r a i n  curve f o r  PET i s  shown i n  figure 6. 

S t r a i n  a t  t h e  proportional l i m i t .  - This property is  defined by 

t h e  point  of departure of  t he  calculated s t r e s s - s t r a i n  curve from the  

l i n e a r  r e l a t i o n  which occurs a t  low s t r a in .  

perature  of 210 C resu l t s  i n  s t r a i n s  of 1 .76 percent while s e t t i n g  a t  

1903 C gives 1.44 percent s t r a i n  a t  the proport ional  l i m i t  ( f i g .  7 ) .  

The difference,  about one-third o f  a percent s t ra in ,  is  approximately a 

The high hea t -se t t ing  tem- 
3 

25  percent increase i n  t h e  value of t h i s  property. This is  t h e  same 

increase  over the  commercial PET f i l m  s t r a i n  of 1.45 percent. A heat- 

s e t t i n g  temperature o f  above 2103 C might r e s u l t  i n  fu r the r  increasing 

t h e  amount o f  s t r a i n  a t  the  proportional l i m i t .  

S t r a i n  a t  break. - The s t r a i n  of t he  experimental f i l m s  a t  break i n  

ni t rogen are a l l  far above t h e  17.4 percent value fo r  t h e  commercial PET 

( f i g .  7 ) .  Both s t r e t ch ing  temperature and hea t -se t t ing  temperature 
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3 

a f fec t  t h i s  property. 

than those s t re tched  a t  85' C. 

s e t t i n g  is  done a t  the  higher temperature of 210' C. Films s t re tched  

and set  a t  the  higher temperatures averaged 37.5 percent s t r a i n ,  over 

twice t h e  cor respnding  s t r a i n  f o r  the commercial f i l m .  A s  previously 

described, higher f i l m  processing temperatures r e s u l t  i n  high c rys t a l -  

l i n i t y .  Thus, t he  most c r y s t a l l i n e  fi lms a t t a i n  t h e  highest  s t r a i n  a t  

break. 

Films s t re tched a t  95 C give higher s t r a i n  values 

This e f f e c t  is more pronounced i f  heat-  

S t r e s s  a t  t h e  proportional l i m i t .  - This is t h e  stress cor respnding  

t o  t h e  s t r a i n  a t  the  proportional l i m i t .  

higher f o r  f i l m s  s t re tched  a t  853 C than f o r  those s t re tched  a t  95' C 

( f i g .  8). 

The modulus of t he  f i l m  s t re tched a t  85' C is  a l s o  higher. 

are similar t o  those obtained i n  t h e  uniax ia l  t e n s i l e  test ,  bu t  are nu- 

merical ly  higher i n  both s t r e s s  and modulus. The b i a x i a l  modulus f o r  t h e  

f i l m  s t re tched  a t  853 C is  2 .46~10  

than those of commercial PET f i l m .  

This stress is  almost 4000 p s i  

Other f ac to r s  do not show s ign i f i can t  e f f e c t s  on t h i s  property. 

These r e s u l t s  

6 p s i .  These stress values are higher 

S t r e s s  a t  break. - The average s t r e s s  a t  break f o r  f i l m s  s t re tched  

a t  t h e  lower temperature is  over 10,000 p s i  g rea te r  than f o r  those s t re tched  

a t  t h e  higher temperature and 16,000 p s i  g rea te r  than f o r  commercial PET 

( f ig .  8).  

SUMMARY OF RESULTS 

1. The c r y s t a l l i n i t y  of t he  b i ax ia l ly  or iented PET film w a s  found 

t o  be higher f o r  f i l m s  heat-set  a t  210' C than f o r  films heat-set  a t  
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a t  190 C. 

perature  and set time, but  t o  a lesser degree f o r  t h e  range o f  t h i s  study. 

The uniax ia l  s t r a i n  a t  t h e  proportional l i m i t  i n  LN of b i a x i a l l y  

or ien ted  PET f i l m  increases  with an increasing set time but  t he re  is an 

in t e rac t ion  with s t r e t c h  temperature. 

t i o n a l  l i m i t  i n  LH 2 

p n d i n g  value determined i n  LN but t h e  s t r a i n  a t  break i s  lower. The 

s t r a i n  a t  break i n  LN2 shows an increase with decreasing s t r e t c h  tempera- 

ture. 

temperature. 

Crys t a l l i n i ty  is  a l so  promoted by an increase i n  s t r e t c h  t e m -  

3. 2 

The average s t r a i n  a t  t h e  p r o p r -  

i s  about 0.25 percent s t r a i n  higher than t h e  corres-  

2' 

2 A lower heat-set  temperature increases  t h e  s t r a i n  a t  break a t  LN 

3. The p r o p r t i o n a l  l i m i t  and breaking stresses i n  both LN and 
2 

LH2 are higher with t h e  lower s t r e t c h  temperature o f  85' C. 

4. B i a x i a l b u r s t  tests performed i n  l i q u i d  nitrogen showed t h a t  

both p r o p r t i o n a l  l i m i t  and s t r a i n  a t  break increase with higher heat-  

set temperature. 

f i l m  of t h i s  inves t iga t ion  w a s  almost twice that of t h e  commercially 

ava i l ab le  PET f i l m .  

The breaking strain of  t he  experimentally processed 

5.  B i a x i a l b u r s t  tests performed i n  l i qu id  ni t rogen showed t h a t  

t h e  p r o p r t i o n a l  l i m i t  and s t r e s s  a t  break decrease with increasing 

s t r e t c h  temperature. These s t r e s s e s  measured on the  f i l m  s t re tched  a t  

low temperature were about 40 percent higher than f o r  t he  commercially 

ava i l ab le  PET film. 
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TABLE I. - UNIAXIAL TENSILE TEST MODULUS 

AVXRAGED OVER SET-TEMPERATURES 

Test 
medium 

LN2 

LN2 

LN2 

LN2 

% 

Stre tch  tem- 
perature, 

OC 

85 

85 

95 

95 

85 

95 

Heat - s e t  
time( sec)  

15 

120 

15 

120 

.5 and 120 

.5 and 120 

Modulus of  
e l a s t i c i t y ,  

psi  

1. 25x106 

1.15 

1.21 

0.87 

1.35 

1.00 
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Figure 1. - Crystal l ini ty of PET f i lm as a funct ion of t h e  
stretch temperature and t h e  heat-set temperature 
and time. 
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Figure 2. - Strain at the proportional l imi t  determined from 
uniaxial tensi le tests of PET f i lm at cryogenic temperatures 
as a funct ion of t h e  stretch temperature and t h e  heat-set 
time. 
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Figure 3. - Stress at t h e  proportional l imi t  deter- 
mined from uniaxial tensile tests of PET f i lm at 
cryogenic temperatures as a function of the  
stretch temperature. 
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Figure 4. - Strain at break determined from uniaxial  
tensile tests of PET f i lm at cryogenic temperatures 
as a funct ion of stretch and heat-set temperatures. 
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Figure 5. - Stress at break determined from uniaxial 
tensile tests of PET fi lm at cryogenic temperatures 
as a function of stretch temperature. 
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Figure 6. - Biaxial stress-strain curve  for a PET fi lm 
tested at 77' K. 
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Figure 7. - Strain at the proportional l imi t  and at break 
determined from biaxial burst  tests of PET f i lm in  LN2 
as a funct ion of stretch and heat-set temperatures. 
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Figure 8. - Stress at t h e  proportional l im i t  and at break 
determined from biaxial burst tests of PET f i lm in LN2 
as functions of stretch temperature. 
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